Understanding the Geometry of Infeasible Perturbations of a Conic Linear System

نویسنده

  • Javier Peña
چکیده

We discuss some properties of the distance to infeasibility of a conic linear system Ax = b; x 2 C; where C is a closed convex cone. Some interesting connections between the distance to infeasibility and the solution of certain optimization problems are established. Such connections provide insight into the estimation of the distance to infeasibility and the explicit computation of infeasible perturbations of a given system. We also investigate the properties of the distance to infeasibility assuming that the perturbations are restricted to have a particular structure. Finally, we extend most of our results to more general conic systems Ax ? b 2 CY ; x 2 CX; where CX and CY are closed, convex cones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming

We describe simple and exact duals, and certificates of infeasibility and weak infeasibility in conic linear programming which do not rely on any constraint qualification, and retain most of the simplicity of the Lagrange dual. In particular, some of our infeasibility certificates generalize the row echelon form of a linear system of equations, and the “easy” proofs – as sufficiency of a certif...

متن کامل

Some Results on the Optimal Correction of Infeasible Second Order Conic Linear Inequalities

It is known that the optimal correction of infeasible linear inequalities in the nonnegative orthant can be achieved by solving a lower dimensional convex problem. In this paper our goal is to investigate the problem of optimal correction of infeasible second order conic linear inequalities. We prove that under certain conditions analogous result to the classic linear case holds. Finally, the e...

متن کامل

A New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization

  We present a new full Nesterov and Todd step infeasible interior-point algorithm for semi-definite optimization. The algorithm decreases the duality gap and the feasibility residuals at the same rate. In the algorithm, we construct strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Every main iteration of the algorithm consists of a feasibili...

متن کامل

Polynomial Convergence of Infeasible-Interior-Point Methods over Symmetric Cones

We establish polynomial-time convergence of infeasible-interior-point methods for conic programs over symmetric cones using a wide neighborhood of the central path. The convergence is shown for a commutative family of search directions used in Schmieta and Alizadeh [9]. These conic programs include linear and semidefinite programs. This extends the work of Rangarajan and Todd [8], which establi...

متن کامل

An improved infeasible‎ ‎interior-point method for symmetric cone linear complementarity‎ ‎problem

We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000